Статьи

16.12.2010

Показатели белкового обмена

Как уже говорилось выше, кровь состоит из жидкой компоненты и клеток, или форменных элементов. Кровь, набранная в сухую пробирку, через несколько минут разделится на сгусток темно красного цвета и светло желтую жидкость над сгустком. Это и будет сыворотка крови. В отличие от сыворотки плазма крови содержит белок фибриноген. Он переходит в сгусток крови во время коагуляции, а значит, чтобы получить плазму крови, нужно добавить в цельную кровь консервирующее вещество, препятствующее коагуляции, и только потом подвергнуть ее центрифугированию.
Кровь состоит на 45% из взвешенных в ней форменных элементов и на 55% из плазмы.
Пожалуй, для полноты картины здесь следует напомнить читателям и о межклеточной жидкости, окружающей клетки нашего тела. Конечно, кровь несет главную нагрузку в вопросе транспортировки веществ к и от тканей тела; но фактически клетки тканей получает вещества из кровеносных сосудов через жидкость, их окружающую. Эту жидкость и называют межклеточной жидкостью.
Растворенные в этой жидкости вещества, так же как часть молекул воды, входят в клетки, и таким же образом выходят в межклеточную жидкость из клеток. Кроме того, концентрация различных веществ в межклеточной жидкости может меняться (например, кислород входит в клетки, а углекислый газ выходит). Таким же самым образом концентрация веществ, растворенных в крови, отличается в капиллярных артериях и венах. За исключением кислорода и небольшого количества углекислого газа, все другие вещества, нуждающиеся в транспорте, передаются через плазму. Плазма в большей степени, чем клетки крови, связывает две циркуляторные системы нашего тела, сердечно сосудистую и лимфатическую. И все вещества перемещаются по организму следующим путем: из плазмы – в межклеточную жидкость – в лимфу – и назад, в плазму. Важно понять, что эти жидкости: кровь, межклеточная жидкость и лимфа – являются по существу одним и тем же, несмотря на любые различия в концентрации; главное различие между ними – местоположение (точно так же, единственное различие между магмой и лавой – местоположение: магма находится под землей, а лава выходит на поверхность). Лимфатические капилляры – открытые сосуды, в стенках которых с известной периодичностью встречаются отверстия, являющиеся местами вхождения межклеточной жидкости. Лимфатическая жидкость в конечном счете соединяется с плазмой через грудной проток в подключичной вене.
В плазме содержится 92% воды, 7% белков и 1% других веществ (углеводов, жиров и минеральных солей). Тот факт, что вода является таким превосходным растворителем, позволяет крови переносить много растворенных веществ. Большинство этих веществ – плазменные белки. Это высокомолекулярные соединения, способные вести себя и как кислоты, и как основания благодаря тому, что их молекулы содержат и карбоксильные (кислотные группы СООН), и аминогруппы (основные группы NH2). Благодаря этим уникальным свойствам плазменные белки способны активно взаимодействовать с самым широким спектром различных веществ, поступающих в кровь.
По форме белки делятся на глобулярные и фибриллярные. Глобулярные белки хорошо растворимы в воде, их молекула имеет шарообразную форму. Фибриллярные белки плохо растворимы в воде и отличаются удлиненной, нитеобразной формой, так что их длина, в отличие от глобулярных белков, во много раз больше диаметра. Как и у любых органических соединений, у белков можно найти и переходные формы – между глобулярной и фибриллярной.
По составу различают простые и сложные белки. Простые белки состоят только из аминокислот. Это альбумины, глобулины, протамины, гистоны (два последних вида сосредоточены в клеточных ядрах и участвуют в регулировании метаболической активности отдельных генов) и некоторые другие.
Самые маленькие из этих белков (составляющие тем не менее приблизительно 60% от всех белков крови) – альбумины, которые играют важную роль в поддержании осмотического давления, помогая переместить больше воды из капилляров. Альбумины также участвуют в транспорте стероидных гормонов.
Приблизительно 35% белков плазмы представлены глобулинами. Они образуют антитела (γ глобулины), которые играют важнейшую роль в борьбе с инфекцией. Два других глобулина, α– и β , транспортируют жиры, жирорастворимые витамины и железо. Приблизительно 7% плазменного белка составляет фибриноген, производимый печенью и являющийся важным участником процесса свертывания крови (см. предыдущую главу). Последний 1% состоит из регулирующих белков типа проферментов, ферментов и гормонов. Учитывая, что эндокринная система бессильна без кровеносной системы, может показаться немного несправедливым, что на долю гормонов приходится так мало плазмы.
Молекулы сложных белков содержат не только аминокислоты, но и другие соединения: нуклеиновые кислоты, форфорную кислоту, углеводы и т. д. Таким образом, нуклеопротеиды, глюкопротеиды, липопротеиды, хромопротеиды, фосфопротеиды и ряд ферментов мы классифицируем как сложные белки.
Остающиеся 1,5% плазмы представлены другими веществами: электролитами, газами, питательными веществами, регулирующими веществами, витаминами и продуктами метаболизма. Еще раз: их ужасно мало, но они тем не менее очень важны! Электролиты весьма разнообразны: Na+, K+, Са2+, Мg2+, Cl , HCO3 , HPO42– и HSO42 . Ионы натрия и кальция (Na+ и Са2+), например, необходимы для сокращения мышц, а ионы бикарбоната (HCO3 ) – для транспорта CO2 к легким.
Важнейшим свойством белков является их гидрофильность или способность связывать молекулы воды, образуя собственную водную оболочку и тем самым поддерживая коллоидно осмотическое, или онкотическое давление. При резком падении содержания в крови белка онкотическое давление снижается, в кровеносном русле появляется избыточное количество «свободной» воды, которая начинает пропотевать через стенки сосудов в окружающие ткани. Так появляются онкотические отеки, т. е. отеки, зависящие от количества белка в крови.
Как уже говорилось выше, благодаря способности связываться со многими типами веществ белки плазмы крови выполняют и транспортные функции.
Кроме того, белки являются одной из буферных систем крови и поддерживают постоянство гомеостаза – кислотно основное состояние (КОС) крови (см. ниже по тексту).

Общий белок

В сыворотке здоровых людей содержится 65–78 г/л общего белка. Это на 2–4 г/л меньше, чем в плазме крови – из за отсутствия фибриногена. Общее количество белка может понижаться, и тогда врачи говорят о гипопротеинемии, которая наблюдается при:
# недостаточном поступлении белка в организм;
# повышенной потере белка;
# нарушении образования белка.

Альбумины

Благодаря различиям белков по аминокислотному составу и физико химическим свойствам их можно разделить на отдельные фракции. Точнее всего такое разделение получается методом электрофореза.
У здоровых людей содержание альбумина составляет 56,5–66,8%, α1– глобулина 3,5–6,0%, α2 глобулина 6,9–10,5%, β глобулина 7,3–12,5%, γ глобулина 12,8–19,0%.
Показания к использования этого анализа для диагностики патологических процессов:
# острые и хронические воспаления;
# заболевания печени;
# злокачественные образования;
# парапротеинемии;
# нефротический синдром;
# нарушение обмена липидов;
# недостаток антител.

Остаточный азот

Процесс синтеза или распада белков является основным компонентом азотистого обмена в организме и также влияет на состав сыворотки крови. Для оценки состояния азотистого обмена в сыворотке определяют фракции остаточного азота. Это так называемый небелковый азот, который остается в центрифугате сыворотки крови после осаждения белков соответствующими реактивами. В его состав входит ряд азотсодержащих веществ (мочевина, аминоазот (азот аминокислот), мочевая кислота, креатинин, индикан и др.). О методах исследования этих веществ будет рассказано ниже.
В норме содержание остаточного азота колеблется в пределах 0,2–0,4 г/л. Увеличение концентрации остаточного азота больше 0,4–0,5 г/л называется азотемией и считается признаком того, что азотистые шлаки либо задерживаются в крови (из за нарушения работы почек), либо вырабатываются с повышенной скоростью (внепочечная азотемия).

С реактивный белок (СРБ)

С реактивный белок, или СРБ – очень чувствительный элемент крови, быстрее других реагирующий на повреждения тканей. Наличие реактивного белка в сыворотке крови – признак воспалительного процесса, травмы, проникновения в организм чужеродных микроорганизмов – бактерий, паразитов, грибов. С реактивный белок стимулирует защитные реакции, активизирует иммунитет.
Содержание СРБ в сыворотке крови до 0,5 мг/л считается нормой. Уже через 4–6 часов после того, как в организм проникает инфекция, развивается воспалительный процесс, который может сопровождаться отеками, а уровень СРБ начинает быстро расти. Чем острее воспалительный процесс, активнее заболевание, тем выше С реактивный белок в сыворотке крови. Когда заболевание в хронической форме переходит в фазу ремиссии, то содержание С реактивного белка в крови практически не обнаруживается. Когда наступает обострение, СРБ снова начинает расти. Определение СРБ используется для диагностики острых инфекционных заболеваний и опухолей. Также анализ СРБ используется для контроля над процессом лечения, эффективностью антибактериальной терапии и т. д. Биохимический анализ крови СРБ может показать рост С реактивного белка в крови в следующих случаях:
# ревматические заболевания;
# заболевания желудочно кишечного тракта;
# рак;
# инфаркт миокарда;
# сепсис новорожденных;
# туберкулез;
# менингит;
# послеоперационные осложнения.
Повышение СРБ происходит при приеме эстрогенов и оральных контрацептивов.

Гомоцистеин

В процессе формирования атеросклероза состояние сосудистой стенки играет не меньшую роль, чем нарушения липидного обмена. Среди факторов, повреждающих стенки сосудов, в последнее время особое внимание привлекает гомоцистеин – промежуточный продукт обмена незаменимой аминокислоты метионина. В норме гомоцистеин живет в организме очень недолго и под действием ферментов с длинными названиями превращается обратно в метионин или в следующий продукт обмена, цистатионин. Различные нарушения в организме приводят к тому, что гомоцистеин в нем накапливается и вызывает ряд патологических эффектов, в частности – поражает внутреннюю стенку артерий. В результате образуются разрывы эндотелия (внутреннего слоя сосудистой стенки), которые организм пытается заживить. Для этого он и использует холестерин и другие липиды. Возможно, образование атеросклеротических бляшек – это патологическое развитие защитной реакции, направленной на устранение дефекта в стенке сосуда, и холестерин здесь не причина, а следствие, или даже защитник целостности стенок наших сосудов. Работа ферментов, участвующих в биохимических превращениях гомоцистеина, невозможна без кофакторов («помощников») – витаминов B6, B12 и B9 (фолиевой кислоты). В этом кроется возможный подход к профилактике и лечению атеросклероза с помощью витаминов группы B, прежде всего – фолиевой кислоты. Гомоцистеиновая теория весьма убедительно объясняет причины возникновения атеросклероза. Но пока холестериновая теория остается общепринятой, врачи и пациенты вопреки фактам, здравому смыслу и биохимии организма насмерть (в прямом смысле этого слова) бьются с веществом, без которого жизнь просто невозможна.
Норма гомоцистеина составляет 5–15 мкмоль/л. При концентрации гомоцистеина в плазме крови 15–30 мкмоль/л определяется умеренная степень гомоцистеинемии, 30–100 мкмоль/л – средняя, более 100 – тяжелая. Умеренная гомоцистеинемия в возрасте до 40 лет, как правило, протекает бессимптомно, однако изменения в коронарных и мозговых артериях уже происходят. Повышение гомоцистеина на 5 мкмоль/л увеличивает риск атеросклеротического повреждения сосудов сердца на 80% у женщин и на 60% у мужчин.
Для максимально правильного расчета риска сосудистых осложнений необходимо применять схему: гомоцистеин + фибриноген + С реактивный белок + расширенный комплекс исследования липидного обмена (триглицериды, холестерин ЛПВП, ЛПНП, ЛПОНП, аполипротеин А и В, индекс атерогенности).
 

<< Вернуться к списку новостей


Процедура анализа ДНК Определение пола ребенка Забор анализов Анализ беременным Общий анализ крови Анализ на болезни Анализ на онкологию Секвенирование ДНК Склонность к заболеваниям Советы врачей ДНК и беременность Генетический паспорт Установление отцовства

02.11.2018. Узи при беременности

Клиника “Доктор Озон” предлагает сделать узи при беременности в Москве

Подробнее >>

09.07.2018. Швейцарские имплант-системы Straumann

 Швейцарские имплант-системы Straumann

Подробнее >>

25.06.2018. Мазок из влагалища

В первичной диагностике кольпитов мазок из влагалища на инфекции традиционно входит в перечень обязательных диагностических процедур.

 

 

Подробнее >>